Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth mechanisms in melt agglomeration in high shear mixers

Identifieur interne : 001835 ( Main/Exploration ); précédent : 001834; suivant : 001836

Growth mechanisms in melt agglomeration in high shear mixers

Auteurs : Torben Sch Fer [Danemark]

Source :

RBID : ISTEX:0A66E48C7BB2A2E3A49F7AB8EB59606F969FD515

Descripteurs français

English descriptors

Abstract

Abstract: This paper presents a review of factors affecting the agglomerate formation and growth mechanisms in melt agglomeration in high shear mixers. The agglomerate formation occurs either by distribution or immersion or by a combination of both mechanisms. Distribution is promoted by a low binder viscosity, by a high impeller speed, and by a small binder particle size. Effects of the liquid saturation of the agglomerates, impeller speed, particle properties, binder viscosity, and electrostatic charging on the subsequent agglomerate growth are discussed, and experimental results are presented. The agglomerate growth becomes controlled by the balance between the agglomerate strength and the shearing forces. If the agglomerate strength is sufficiently high to resist the shearing forces of the rotating impeller, the dominant agglomerate growth mechanism will be coalescence. The shearing forces will give rise to breakage if the agglomerate strength is too low, and then agglomerate growth will occur by a simultaneous buildup and breakdown of agglomerates, possibly combined with growth by layering of fragments upon larger agglomerates. Provided that the liquid saturation is sufficiently high, a higher agglomerate strength is primarily caused by a higher binder viscosity, a smaller particle size, an irregular particle shape, and by densification of the agglomerates.

Url:
DOI: 10.1016/S0032-5910(01)00315-1


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Growth mechanisms in melt agglomeration in high shear mixers</title>
<author>
<name sortKey="Sch Fer, Torben" sort="Sch Fer, Torben" uniqKey="Sch Fer T" first="Torben" last="Sch Fer">Torben Sch Fer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0A66E48C7BB2A2E3A49F7AB8EB59606F969FD515</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0032-5910(01)00315-1</idno>
<idno type="url">https://api.istex.fr/document/0A66E48C7BB2A2E3A49F7AB8EB59606F969FD515/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A02</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A02</idno>
<idno type="wicri:Area/Istex/Curation">001A02</idno>
<idno type="wicri:Area/Istex/Checkpoint">000498</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000498</idno>
<idno type="wicri:doubleKey">0032-5910:2001:Sch Fer T:growth:mechanisms:in</idno>
<idno type="wicri:Area/Main/Merge">001B10</idno>
<idno type="wicri:Area/Main/Curation">001835</idno>
<idno type="wicri:Area/Main/Exploration">001835</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Growth mechanisms in melt agglomeration in high shear mixers</title>
<author>
<name sortKey="Sch Fer, Torben" sort="Sch Fer, Torben" uniqKey="Sch Fer T" first="Torben" last="Sch Fer">Torben Sch Fer</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Pharmaceutics, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen</wicri:regionArea>
<wicri:noRegion>DK-2100 Copenhagen</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Danemark</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Powder Technology</title>
<title level="j" type="abbrev">PTEC</title>
<idno type="ISSN">0032-5910</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">117</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="68">68</biblScope>
<biblScope unit="page" to="82">82</biblScope>
</imprint>
<idno type="ISSN">0032-5910</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-5910</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta pharm</term>
<term>Agglomerate</term>
<term>Agglomerate formation</term>
<term>Agglomerate growth</term>
<term>Agglomerate growth mechanisms</term>
<term>Agglomerate size distribution</term>
<term>Agglomerate strength</term>
<term>Agglomeration</term>
<term>Agglomeration experiments</term>
<term>Agglomeration process</term>
<term>Anhydrous</term>
<term>Anhydrous dicalcium phosphate</term>
<term>Anhydrous lactose</term>
<term>Binder</term>
<term>Binder distribution</term>
<term>Binder viscosity</term>
<term>Breakage</term>
<term>Chem</term>
<term>Coalescence</term>
<term>Corn starch</term>
<term>Deformability</term>
<term>Densification</term>
<term>Distribution mechanism</term>
<term>Droplet</term>
<term>Granule</term>
<term>Granule size</term>
<term>High impeller speed</term>
<term>High shear mixer</term>
<term>High shear mixers</term>
<term>High viscosity</term>
<term>Higher impeller speed</term>
<term>Higher porosity</term>
<term>Higher viscosity</term>
<term>Holm</term>
<term>Immersion mechanism</term>
<term>Impeller</term>
<term>Impeller speed</term>
<term>Intragranular</term>
<term>Intragranular porosity</term>
<term>Kristensen</term>
<term>Lactose</term>
<term>Lactose monohydrate</term>
<term>Liquid saturation</term>
<term>Loose structure</term>
<term>Lower viscosity</term>
<term>Mass ratio</term>
<term>Meltable</term>
<term>Meltable binder</term>
<term>Mixer</term>
<term>Mixer torque rheometer</term>
<term>Molten binder</term>
<term>Monohydrate</term>
<term>Nucleation phase</term>
<term>Other hand</term>
<term>Particle shape</term>
<term>Particle size</term>
<term>Pelletization</term>
<term>Pelletization process</term>
<term>Pharm</term>
<term>Porosity</term>
<term>Powder technol</term>
<term>Powder technology</term>
<term>Primary particles</term>
<term>Resistivity</term>
<term>Saturation</term>
<term>Shearing forces</term>
<term>Size distribution</term>
<term>Small particle size</term>
<term>Solid binder</term>
<term>Solid particles</term>
<term>Static voltage</term>
<term>Stearic</term>
<term>Stearic acid</term>
<term>Technol</term>
<term>True density</term>
<term>Uncontrollable agglomerate growth</term>
<term>Wider size distribution</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta pharm</term>
<term>Agglomerate</term>
<term>Agglomerate formation</term>
<term>Agglomerate growth</term>
<term>Agglomerate growth mechanisms</term>
<term>Agglomerate size distribution</term>
<term>Agglomerate strength</term>
<term>Agglomeration</term>
<term>Agglomeration experiments</term>
<term>Agglomeration process</term>
<term>Anhydrous</term>
<term>Anhydrous dicalcium phosphate</term>
<term>Anhydrous lactose</term>
<term>Binder</term>
<term>Binder distribution</term>
<term>Binder viscosity</term>
<term>Breakage</term>
<term>Chem</term>
<term>Coalescence</term>
<term>Corn starch</term>
<term>Deformability</term>
<term>Densification</term>
<term>Distribution mechanism</term>
<term>Droplet</term>
<term>Granule</term>
<term>Granule size</term>
<term>High impeller speed</term>
<term>High shear mixer</term>
<term>High shear mixers</term>
<term>High viscosity</term>
<term>Higher impeller speed</term>
<term>Higher porosity</term>
<term>Higher viscosity</term>
<term>Holm</term>
<term>Immersion mechanism</term>
<term>Impeller</term>
<term>Impeller speed</term>
<term>Intragranular</term>
<term>Intragranular porosity</term>
<term>Kristensen</term>
<term>Lactose</term>
<term>Lactose monohydrate</term>
<term>Liquid saturation</term>
<term>Loose structure</term>
<term>Lower viscosity</term>
<term>Mass ratio</term>
<term>Meltable</term>
<term>Meltable binder</term>
<term>Mixer</term>
<term>Mixer torque rheometer</term>
<term>Molten binder</term>
<term>Monohydrate</term>
<term>Nucleation phase</term>
<term>Other hand</term>
<term>Particle shape</term>
<term>Particle size</term>
<term>Pelletization</term>
<term>Pelletization process</term>
<term>Pharm</term>
<term>Porosity</term>
<term>Powder technol</term>
<term>Powder technology</term>
<term>Primary particles</term>
<term>Resistivity</term>
<term>Saturation</term>
<term>Shearing forces</term>
<term>Size distribution</term>
<term>Small particle size</term>
<term>Solid binder</term>
<term>Solid particles</term>
<term>Static voltage</term>
<term>Stearic</term>
<term>Stearic acid</term>
<term>Technol</term>
<term>True density</term>
<term>Uncontrollable agglomerate growth</term>
<term>Wider size distribution</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Lactose</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This paper presents a review of factors affecting the agglomerate formation and growth mechanisms in melt agglomeration in high shear mixers. The agglomerate formation occurs either by distribution or immersion or by a combination of both mechanisms. Distribution is promoted by a low binder viscosity, by a high impeller speed, and by a small binder particle size. Effects of the liquid saturation of the agglomerates, impeller speed, particle properties, binder viscosity, and electrostatic charging on the subsequent agglomerate growth are discussed, and experimental results are presented. The agglomerate growth becomes controlled by the balance between the agglomerate strength and the shearing forces. If the agglomerate strength is sufficiently high to resist the shearing forces of the rotating impeller, the dominant agglomerate growth mechanism will be coalescence. The shearing forces will give rise to breakage if the agglomerate strength is too low, and then agglomerate growth will occur by a simultaneous buildup and breakdown of agglomerates, possibly combined with growth by layering of fragments upon larger agglomerates. Provided that the liquid saturation is sufficiently high, a higher agglomerate strength is primarily caused by a higher binder viscosity, a smaller particle size, an irregular particle shape, and by densification of the agglomerates.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
</list>
<tree>
<country name="Danemark">
<noRegion>
<name sortKey="Sch Fer, Torben" sort="Sch Fer, Torben" uniqKey="Sch Fer T" first="Torben" last="Sch Fer">Torben Sch Fer</name>
</noRegion>
<name sortKey="Sch Fer, Torben" sort="Sch Fer, Torben" uniqKey="Sch Fer T" first="Torben" last="Sch Fer">Torben Sch Fer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0A66E48C7BB2A2E3A49F7AB8EB59606F969FD515
   |texte=   Growth mechanisms in melt agglomeration in high shear mixers
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024